You are using an outdated browser. For a faster, safer browsing experience, upgrade for free today.

Approaches and methods of soil remediation from heavy metals pollution (review)

ISSN 2223-6775 Ukrainian journal of occupational health Vol.21, No 2, 2025

https://doi.org/10.33573/ujoh2025.02.162

APPROACHES AND METHODS OF SOIL REMEDIATION FROM HEAVY METALS POLLUTION

Dmytrukha N.M.1, Gromovoy T.Yu.1,2, Kozlov K.P.1

1 State Institution "Kundiiev Institute of Occupational Health of National Academy of Medical Sciences of Ukraine", Kyiv

2 Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv

Full article (PDF), UKR

Introduction. In Ukraine, active hostilities have created new environmental, medical, and social challenges due to heavy metal contamination. The use of weapons, large-scale bombings, and destruction of industrial facilities cause long-term pollution of air, soil, and water. Because heavy metals are toxic and cumulative, they pose significant risks to public health in the post-war period. Restoring soils and other environmental components has therefore become a priority task for Ukrainian scientists, including hygienists and toxicologists.

Purpose. To analyze global and domestic literature on soil pollution with heavy metals resulting from military activities and to summarize modern approaches and methods for soil remediation aimed at preserving functionality and preventing health risks.

Materials and methods. The study applied information search and theoretical analysis. An analytical review of scientific publications was conducted using international (PubMed, MEDLINE, BioMed Central, Free Medical Journals) and national (V.I. Vernadsky National Library of Ukraine) databases, as well as open Internet resources.

Results. Soil remediation requires coordinated efforts of specialists across disciplines and integration of data from ecological, chemical, and toxicological monitoring. Current physicochemical approaches include excavation, thermal treatment, ion exchange, and sorption techniques. Biological methods—particularly bioremediation—are gaining attention due to their effectiveness and cost efficiency. Phytoremediation employs metal-hyperaccumulating plants that can store metals at levels 10–500 times higher than ordinary plants. Another promising direction is the use of microorganisms to immobilize or transform heavy metals. Literature data show that biological remediation methods are increasingly applied worldwide, offering sustainable solutions to reduce risks for crop productivity, food safety, and human health.

Conclusions. Military activities cause extensive and long-term environmental degradation, contaminating soils with heavy metals and other hazardous substances, which leads to ecological, medical, and economic consequences. Soil remediation strategies for Ukraine should be tailored to national conditions rather than fully rely on foreign experience. Effective approaches must restore soil structure and functionality, reduce heavy metal loads, and mitigate their impact on public health. Research into the environmental and health consequences of war should become a priority in Ukraine’s post-war recovery program.

Keywords: heavy metals, soils, remediation, health risks.

References:

  1. A clean environment is the key to health [Internet]. 2025 Mar 05 [cited 2025 Jun 01]. Available from: https://consumerhm.gov.ua/4144-chiste-dovkillya-zaporuka-zdorov-ya
  2. Pollution of environment by MCL Group. [Internet]. [cited 2025 Jun 01]. Available from: https://mcl.kiev.ua/zagryaznenie-okruzhayushhej-sredy-tyazhelymi-metallami/.
  3. Grishko VM, Syshchikov DV, Piskova OM, Danylchuk OV, Mashtaler NV. [Heavy metals: entry into soils, translocation in plants and ecological safety]. Donetsk: Donbas; 2012. 304 p.
  4. Karmazynenko SP, Kuraeva IV, Samchuk AI, Voytyuk YYu, Manichev VY. Heavy metals in environmental components of Mariupol (ecological and geochemical aspects). Kyiv: Interservis; 2014. 168 p.
  5. Soil contamination with heavy metals [Internet]. [cited 2025 Jun 01]. Available from: http://kegt.rshu.edu.ua/images/dustan/ORZRpdf
  6. Hulich MP, Kharchenko OO, Yemchenko NL, Olshevska OD, Lyubarska LS. [The war in Ukraine: the problem of heavy metal contamination of agricultural land and products]. Environment & Health. 2024;(4):38-44. DOI: https://doi.org/10.32402/dovkil2024.04.038
  7. Dmytrukha NM, Kozlov KP, Herasimova OV. Soil contamination with heavy metals: a hygienic concern. Ukrainian journal of occupational health. 2024;20(1):66-75. DOI: https://doi.org/10.33573/ujoh2024.01.066
  8. Zaitsev Yu, Hryshchenko O, Romanova S, Zaitseva I. [Influence of combat actions on the content of gross forms of heavy metals in the soils of Sumy and Okhtyrka districts of Sumy region]. Agroecological journal 2022;(3):136-49. DOI: https://doi.org/10.33730/2077-4893.3.2022.266419
  9. Spoditely A, Golubtsov O, Chumachenko S, Sorokina L. The impact of Russia's war against Ukraine on the state of Ukrainian soils. Results of the analysis. [Internet]. Kyiv: Center for Environmental Initiatives Ecoaction; 2023 [cited 2025 Jun 05]. Available from: https://ecoaction.org.ua/wp-content/uploads/2023/03/zabrudnennia-zemel-vid-rosii2.pdf
  10. Geochemical condition of soils in the combat zone. AgroPortal. [Internet]. 2025 Mar 05 [cited 2025 Jun 05]. Available from: https://agroportal.ua/blogs/geohimichniy-stan-gruntiv-u-zoni-boyovih-diy-imovirni-riziki-dlya-agrosektoru-ta-shlyahi-virishennya
  11. 25 times more harmful metals in soils: how war pollutes fertile black soils and can they be restored. Center for Public Monitoring and Control [Internet]. 2023 Mar 13 [cited 2025 Jun 05]. Available from: https://naglyad.org/uk/2023/03/13/v-25-raziv-bilshe-shkidlivih-metaliv-u-gruntah-yak-vijna-zabrudnyuye-rodyuchi-chornozemi-ta-chi-mozhna-yih-vidnoviti/.
  12. Hutsol GV. Assessment of the intensity of soil contamination by heavy metals and measures to improve their quality. The scientific 2020;(48):3-8.
  13. Is it possible to cure soil from war - answers to the most common questions. Kurkul.com. [Internet]. 2023 Mar 14 [cited 2025 Jun 05]. Available from: https://kurkul.com/spetsproekty/1423-chi-mojna-vilikuvati-grunt-vid-viyni--vidpovidi-na-nayposhirenishi-zapitannya
  14. Vardhan KH, Kumar PS, Panda RC. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019;290:111197. DOI: https://doi.org/10.1016/j.molliq.2019.111197
  15. 5 most common soil remediation methods. Ahrobiznes Sohodni [Internet]. 2024 Oct 22 [cited 2025 Jun 05]. Available from: https://agro-business.com.ua/zberezhennia-hruntu/item/30900-5-naiposhyrenishykh-metodiv-remediatsii-gruntu.html
  16. Zhou P, Yan H, Gu B. Competitive complexation of metal ions with humic substances. Chemosphere. 2005;58:1327-37. DOI: https://doi.org/1016/j.chemosphere.2004.10.017
  17. Rudneva KE, Karnozhytsky PV. [Multiple use of humates as sorbents of heavy metal ions]. [Modern technologies of fossil fuel processing: abstracts of the 4th International Scientific and Technical Conference, Kharkiv, April 15-16, 2021]. Kharkiv: Planeta-Print; 2021. P. 29-30.
  18. Barr D, Finnamore JR, Bardos RP, Weeks JM. Biological methods for assessment and remediation of contaminated land: case studies. London, UK: Construction Industry Research and Information Association;
  19. Tsytsiura YaG, Shkatula YuM, Zabarna TA, Pelekh LV. Innovative approaches to phytoremediation and phytorecultivation in modern farming systems. Vinnytsia: Druk LL; 2022.
  20. Dursun S, Symochko L, MankolliBioremediation of heavy metals from soil: an overview of principles and criteria of using. Agroecological journal. 2020;(3):6-12. DOI: https://doi.org/10.33730/2077-4893.3.2020.211521
  21. Samokhvalova VL. [Biological methods of remediation of soils contaminated by heavy metals]. Studia Biologica. 2014;8(1):217-36. DOI: https://doi.org/10.30970/sbi.0801.337
  22. Samokhvalova VL. [Phytoremediation of technogenically polluted soils]. Agroecological journal. 2015;(1):92-100. DOI: https://doi.org/10.33730/2077-4893.1.2015.272192
  23. Lee JH. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Bioprocess. Eng. 2013;18:431-9. DOI: https://doi.org/10.1007/s12257-013-0193-8
  24. Meagher RB. Phytoremediation of toxic elemental organic pollutants. Curr. Opin. Plant. 2000;3(2):153-62. DOI: https://doi.org/10.1016/s1369-5266(99)00054-0
  25. Melnychenko V. Phytoremediation of soils contaminated as a result of military and anthropogenic impact. Scientific Reports of the National University of Life and Environmental Sciences of Ukraine. 2024;20(4):72-84. DOI: https://doi.org/10.31548/dopovidi/3.2024.72
  26. Ghosh M, Singh S. A review on phytoremediation of heavy metals and utilization of its by-products. Appl. Ecol. Environ. Res. 2025;3:1-18. DOI: https://doi.org/15666/aeer/0301_001018
  27. Tangahu BV, Abdullah SR., Basri H, Idris M, Anuar N, Mukhlisin M. A Review on Heavy Metals (As, Pb, and Hg) Up-Take by Plants through Phytoremediation. International Journal of Chemical Engineering. 2011:939161. DOI: https://doi.org/10.1155/2011/939161
  28. Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 2011;180(2):169- DOI: https://doi.org/10.1016/j.plantsci.2010.08.016
  29. Dushenkov S, Kapulnik Y, Blaylock M, Sorochinsky B, Raskin I, Ensley B. Phytoremediation: a novel approach to an old problem. In: Wise DL, editor. Global Environmental Biotechnology. Amsterdam: Elsevier Science BV; 1997. p. 563-72.
  30. Ma W, Zhao B, Ma J. Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species. Environ. Sci. Pollut. Res. 2019;26:26733- DOI: https://doi.org/10.1007/s11356-019-05827-2
  31. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021;211:111887. DOI: https://doi.org/10.1016/j.ecoenv.2020.111887
  32. Patsula O, Fetsiukh A, Bunio L. [The application of Salix viminalis L. for soil phytoremediation, polluted by heavy metals]. Ecological Sciences 2018;2(1):101-6.
  33. Boretska Iu, Dzhura N, Romaniuk O. [Phytoremediation of technogenically contaminated soils using energy crops]. Ecological Sciences. 2021;(6):72-6. DOI: https://doi.org/10.32846/2306-9716/2021.eco.6-39.11
  34. Radočaj D, Velić N, Jurišić M, Merdić E. The remediation of agricultural land contaminated by heavy metals. Poljoprivreda. 2020;6(2):30-42. DOI: https://doi.org/10.18047/poljo.26.2.4
  35. Li D, Li R, Ding Z, Ruan X, Luo J, Chen J, Zheng J, Tang J. Discovery of a novel native bacterium of Providencia with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere. 2020;241:125039. DOI: https://doi.org/10.1016/j.chemosphere.2019.125039
  36. Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O'Connor D. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environment International. 2020;134: DOI: https://doi.org/10.1016/j.envint.2019.105281
  37. Yang Z, Wu Z, Liao Y, Liao Q, Yang W, Chai L. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil. Chemosphere. 2017;81:1-8. DOI: https://doi.org/10.1016/j.chemosphere.2017.04.041
  38. Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. Journal of Hazardous Materials. 2020;386: DOI: https://doi.org/10.1016/j.jhazmat.2019.121628
  39. Naja G, Volesky B. The mechanism of metal cation and anion biosorption. In: Kotrba P, Mackova M, Macek T, editors. Microbial Biosorption of Metals. Dordrecht: Springer; p. 19-58. DOI: https://doi.org/10.1007/978-94-007-0443-5_3
  40. Tripathi S, Yadav S, Sharma P, Purchase D, Syed A, Chandra Plant growth promoting strain Bacillus cereus (RCS-4 MZ520573.1) enhances phytoremediation potential of Cynodon dactylon L. in distillery sludge. Environ. Res. 2022;208:112709. DOI: doi.org/10.1016/j.envres.2022.112709
  41. Yancheshmeh JB, Khavazi K, Pazira E, Solhi Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium uptake by canola and barley. Afr. Journal Microbiol. Res. 2011;5:1747-54. DOI: https://doi.org/10.5897/AJMR10.625
  42. Haq I, Kalamdhad Enhanced biodegradation of toxic pollutants from paper industry waste water using pseudomonas sp. immobilized in composite biocarriers and its toxicity evaluation. Bioresource technology reports. 2023;24:101674. DOI: https://doi.org/10.1016/j.biteb.2023.101674
  43. Liu C, Lin H, Li B, Dong Y, Gueret Yadiberet Menzembere ER. Endophyte Pseudomonas putida enhanced Trifolium repens L. growth and heavy metal uptake: A promising in-situ non-soil cover phytoremediation method of nonferrous metallic tailing. Chemosphere. 2021;272:129816. DOI: https://doi.org/10.1016/j.chemosphere.2021.129816
  44. Anand V, Kaur J, Srivastava S, Dharmesh V, Bist V, Maheshwari A, Yadav S, Srivastava Plant microbe synergism for arsenic stress amelioration in crop plants. In: Genomics Approach to Bioremediation: Principles, Tools, and Emerging Technologies. John Wiley& Sons, Inc.; 2023. P. 69-87. DOI: https://doi.org/10.1002/9781119852131.ch5
  45. Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent advance sinmicrobial-assisted remediation of cadmium-contaminated Soil. Plants. 2023;12:3147. DOI: https://doi.org/3390/plants12173147
  46. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg Rhizoremediation: a Beneficial Plant-Microbe Interaction. Mol. Plant. Microbe. Interact. 2004;17(1):6-15. DOI: https://doi.org/10.1094/MPMI.2004.17.1.6
  47. Ajmal AW, Yasmin H, Hassan MN, Khan N, Jan BL, Mumtaz S. Heavy metal–resistant plant growth–promoting Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 enhance wheat (Triticum aestivum L.) growth by modulating physiological attributes and some key antioxidants under multi-metal stress. Microbiol. 2022;13:815704. DOI: https://doi.org/10.3389/fmicb.2022.815704
  48. Nurzhanova A, Mukasheva T, Berzhanova R, Kalugin S, Omirbekova A, Mikolasch A. Optimization of microbial assisted phytoremediation of soils contaminated with Int. J. Phytoremediation. 2020;23(5):482-91. DOI: https://doi.org/10.1080/15226514.2020.1825330
  49. de-Bashan LE, Hernandez J-P, Bashan Y. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation - a comprehensive evaluation. Appl. Soil. Ecol. 2012;61:171-89. DOI: https://doi.org/10.1016/j.apsoil.2011.09.003
  50. Dzhigirei VS. [Ecology and environmental protection: textbook]. 4th ed., revised and suppl. Kyiv: Znannia; 2006. 173 p.
  51. Zhydetskyi VTs, Dzhyhyrei VS, Melnikov OV. [Fundamentals of Occupational Safety]. 2nd ed., stereotyped. Lviv: Afisha; 2000. 141 p. Ukrainian.